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The concept of the invariant-group solution (H-solution) was introduced 
and a general method for obtaining it was deveioped in [ l -a] .  The 
group properties of the equations of a monoenergetic charged-particle 
beam with the same value and sign of the specific charge ~, assuming 
univalency of the velocity vector V, were studied in [4-6], where all 
essentially different H-solutions were also constructed. Below, the re- 
suits of [4-ti] are extended to the case of a beam in the presence of a 
fixed background of density P0 (~1), and also to the case of multive- 
locity (V is an s-valued function) and multicomponent beams (i, e . ,  
beams formed by particles of several kinds) (w A number of anal- 
ytic solutions that describe some nonstationary processes in devices 
with plane, cylindrical, and spherical geometry-among them a con- 
tinuous periodic solution for a plane diode with a period determined 
by the background density-are obtained in ~1. A transformation that 
contains arbitrary functions of time and preserves Vlasov's equations is 
given (~2). The equations studied can be treated as the equations of a 
rarefied plasma in the magnetohydrodynamic approximation, when 
the pressure gradients are negligible as compared with forces of elec- 
tromagnetic origin. 

w 1. I n v a r i a n t  s o l u t i o n s  of  t h e  e q u a t i o n s  of  a b e a m  

i n  t h e  p r e s e n c e  of a b a c k g r o u n d .  The  e q u a t i o n s  of  a 

b e a m  in  the  p r e s e n c e  of  a b a c k g r o u n d  d i f f e r  f r o m  t h e  

e q u a t i o n s  d e r i v e d  in  [6] on ly  by  a d d i t i o n a l  t e r m s  in t h e  

P o i s s o n  e q u a t i o n  

VV o~ i 

H e r e  P0 i s  t he  d e n s i t y  of  t h e  p a r t i c l e  b a c k g r o u n d ,  

w h e r e  t30 > 0,  if  t h e  b a c k g r o u n d  i s  f o r m e d  b y  c h a r g e s  

of t h e  s a m e  s i g n  a s  t h e  c h a r g e  of t h e  b e a m  p a r t i c l e s ,  

a n d  130 < 0 in  t h e  o p p o s i t e  c a s e .  T h e  p r i n c i p a l  g r o u p  

of e q u a t i o n s  of  t h e  b e a m  in t h e  p r e s e n c e  of a b a c k -  

g r o u n d  w i l l  be  l e s s  g e n e r a l  t h a n  w h e n  P0 = 0 [6]; now 

X 1 + X 2 m a k e s  s e n s e ,  bu t  no t  e a c h  of t h e s e  o p e r a t o r s  

i n d i v i d u a l l y  

0 
X~ + X2 = r ~  + V ~ ,  + 2~ o~- (1 .2)  

We s h a l l  r e t a i n  t h e  s a m e  n o t a t i o n  a s  in  [6] f o r  t h e  

r e m a i n i n g  o p e r a t o r s .  A s  u s u a l ,  in  t h e  e l e c t r o s t a t i c  

c a s e  we  h a v e  t r a n s f o r m a t i o n s  w i t h  a r b i t r a r y  f u n c t i o n s  

of t i m e  f ,  g ,  h. 

We w i l l  c o n s i d e r  m o r e  p a r t i c u l a r l y  p l a n e  f l o w s .  

O P T I M A L  S YSTEM OF S I N G L E - P A R A M E T E R  S U B -  

G R O U P S  

1st class 2nd class 
1% X~ 4% X ~ + a X ~  7 ~ . X ~ + a X o  
2 ~ X4 5 ~ (Xa + X~) + aXa 3rd class (1. 3) 
3% X~+Xz 0% X3+a(X~+X2)  8% X7+Y~ 

O P T I M A L  SYSTEM OF T W O - P A R A M E T E R  S U B -  

G R O U P S  

1st class 
~o. X~,X~ 4 ~ . X~+X~, X~ 
2 ~ Z l - t - X ~ , X ~  5 ~ X a + a X 6 , ( X ~ + X ~ ) + b X ~  (1.4) 
3 ~ X ~ + a ( X ~ + X ~ ) , X ~  6 ~ . ( X ~ + X  D + a x o ,  X~ 

2nd class 

7% X i + a X o ,  Xs 8 ~ �9 X4+Y7, Xsq-aX6 
9 ~ �9 X 4 + Z F i ( X x + X ~ ) + a X ~  

3rd class 
i0 ~ Xs, X0 12 ~ . ( x x w x l ) + X s ,  Zs 
1t% Xa+X~, Ys t3~ X~+XI,  Xs+Y~ 

T h e  H - s o l u t i o n s  of  r a n k  I i n  the  t a b l e  c o r r e s p o n d  to 

t h e  e n u m e r a t e d  s u b g r o u p s  of  t he  o p t i m a l  s y s t e m  (1 .4) .  

T h e  H - s o l u t i o n s  c o n s t r u c t e d  ill s u b g r o u p s  1 ~  ~ d e -  

s c r i b e  s t a t i o n a r y  f l o w s .  F o r  al l  of  t h e  s o l u t i o n s  w e  
h a v e  

o=G(~) ,  H=S~(~) 

L e t  us  e x a m i n e  s o m e  H - s o l u t i o n s  of r a n k  1. 

So l u t i o n  4 ~ d e s c r i b e s  t h e  f low b e t w e e n  p a r a l l e l  

p l a n e s  y = e o n s t .  

T a b l e  of H - s o l u t i o n s  of R a n k  1 

1 o 

2 ~ 

3 ~ 

H-solutions of ist c lass  

~o 

5~A 

5.~2 

5.% 
5?4 
6 o 

conditions 
on a, b ~" 

X 

l b  

a = - -  b2 / bl qi 
@ 

:l ~ a ' ,  b ~ q l  - -  t �9 

u = 0, b=/=0 , ]nR--~ 

~5/=0, b = 0  t - -a~p ! 

a = O , b = O  t 

a# :O z% - t  

V q~ 

Jv J~ 

RJ v RIJ4 

eb,q,jv eZbJq,Ji 

Y Jr Y zJl 
R Jr B~J4 
RJ v BlYt 
RJ v R2Ji 
RJ v R2Ja 
xJ v x~J4 

a ' = - - b ~ ]  (bl~'+b~), b ' =  bl / (b12+ b2 2) 

H-solutions of 2nd class (H r 0. a ~ o) 

l 

8 ~ ay - -  t Jv 

9 ~ ya e - -  t Y Jr 

J4 
o~ + ai 

ere t S a x + Y~dl 

H-sol/tions of 3rd class (H =0) 

u v 

11 ~ 

12 ~ 

13~,1 

13~2 

10 ~ 

~=b=O 

(1 

t 

- - t  ye 

t 

t 

J• + Jr 

"T- + VJ1 

~z + y J1 

/ ' l-lx I -  

+ ( tx - h0  d~ 

l ' ! - ' ~  + 
+ (~ - -  Iv) J1 

yJ~ 

yJ~ 

t- lg + 
+ (t~ - -  iv) J z 

(z - -  Iv) az 

T = l / 2 ~ ( ~ - - l )  

-~-4- g*yS 
2g 

Tx 2 + ylJ4 

~ 2 X 2  

2 + YSY4 

%1"!-1x~ + 
+ (tx - l Y f  14 

1/2 ! "!-lx~ + 
+ (x - -  Iv)" J4 
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Fig.  1 

Sys tem (S/H) in the case  of a un i fo rm magnet ic  
f ie ld  H 0 has the following fo rm:  

J~' + JiJ~ =: HoJ~, J~' + Js z = 

----- 2J~ -- Ho]~, Jr," -}- g~J~ = O, (i. 5) 

2J~ = Y~ + Po 

It can be seen  that  the f i r s t  of these  equat ions is 
sa t i s f ied  when J t  = H0. E l imina t ing  J4 and J~, we ob-  
t a in  

I" + 3JJ'  -4- .l s + co~J = 0 (j = j,. cos = H,~-- po) (1.6) 

Th ree  eases  should be examined:  (1) w z > O, i . e . ,  

e i the r  Po < 0 or  0 < Po < Ho~; (2) ~o 2 < 0, i . e . ,  Po > Ho~; 
(3) w = 0. F o r  the f i r s t  case ,  the solut ion is  given by 

(.0 COS T ~0) ~ 

u = t l o y ,  v--x_~_sin~ y, q ~ = 2 ( x + s i n ~ )  y~' 

uo~ ~ 
O--x+s in~  , H=Ho~ (1.7) 

It is apparent that when the normal velocity compo- 
nent is determined, the addition of a compensating 
background is equivalent to amplification of the mag- 
netic field and, conversely, the addition of a back- 
ground of the same sign is equivalent to attenuation 
of the magne t i c  f i e ld - - the  r e s u l t  is  e n t i r e l y  n a t u r a l  
(a t tenuat ion or  ampl i f i ca t ion  of E for  a fixed H). The 
n a t u r e  of the solut ion and the f o r m  of the t r a j e c t o r i e s  
a r e  the s a m e  as those of solut ion (3.15) in [6] when 

Po=O.  

f 

0 

Fig.  2 

In the second case ,  solving (1.6) ,  we obta in  

J~ ~s t -- T s ch~ ~ + ~s shS 
= ~s -- ~2 (sh x -- ~)~ ' 

{x = "~ / V ~ '  - "r', co = i~ ,  ~ = fit +:~,  f12 _ .~t > o) 
fl 

J = (~ = ~) ( 1 . 8 )  

The fo rm of the funct ion J(r)  when ~2 _ 72 > 0 is 
shown in Fig.  1. The r e ma i n i ng  p a r a m e t e r s  of the 
flow behave in the s ame  m a n n e r ,  suffer ing a d i scon-  
t inui ty  at the point  sh r = n and monoton ica l ly  d e c r e a s -  
ing as Ir[ -~ ~;  he re  

J t  = Ho, j~ __. p., j ,  _.. x/z (f~2 + Ho2), Js -- 0 .  

In the th i rd  case ,  Eq. (1.6) agrees  with the equa-  
t ion that  d e s c r i b e s  the change in veloci ty  with r e spec t  
to t ime  in  e l ec t ros ta t i c  flow between pa ra l l e l  p lanes  
and at P0 = 0 [6]. The solut ion is given by the cu rves  
in Fig.  3 [6]--the only d i f ference  is that the curve  for  
J4 mus t  be  r a i s ed  by tt~. 

Fig. 3 

5 ~ . 4. Le t  us cons ide r  an e l e c t r o s t a t i c  solut ion of 
this  form.  Sys tem (S/H) is  then 

j ,  + j2 = 2J4, Js' + 2J J5 - O, 

4J4 = Js -~- Po (J=JO" 
(1.9) 

El imina t ing  J4 and Js, we obtain 

J" + 4]J' + 2J 3 -- p j  = 0. (i. 10) 

Solution (1.10) is given by the expression 

j2  = 2 ( A t  + B)  e -2~ + X / 2 p  o ,  ( 1 . 1 1 )  

where  t and ~ a re  l inked by the r e l a t i on  

t = I d~ . 
V2 (A; + B)e-~ + 1/~ p0 (1. 12) 

It  is not diff icult  to see  that  Js(~) is  speci f ied  by the 
s ame  curve  as in  Fig .  4 [6], and J4(~) is obtained when 
the co r r e spond ing  curve  in Fig.  4 is r a i s e d  by P0/4. 
Note,  however ,  that  r e l a t i on  (1.12) d i f fers  f r o m  t = 
= t(~), which was de r ived  in  [6]. Solution (1.11) is  not 

g 

J 1 
Fig. 4 
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val id  at all  va lues  of ~ but  only at those va lues  for  
which j2  > 0. F i g u r e  2 i l l u s t r a t e s  this .  When pa > 0 
(background of the same  sign as the charge  of the beam 
pa r t i c l e s ) ,  the so lu t ion  makes  sense  over  the in t e rva l  
~3 -< ~ < co. The na tu re  of the flow is the same  as when 
Po = 0 [61--the only d i f fe rence  is that  l~ ~ ~-/~P0, Y~ 
-~ V~po, Y~ ~ 0. When P0 < 0 (compensat ing background) ,  
the solut ion is  va l id  when ~1 - ~ --< g2; the veloci ty  van -  
i shes  at the ends of the in t e rva l  (Fig. 3). When J4 = 0, 
the beam dens i ty  and the background dens i ty  a re  equal. 
L a t e r  J~ ~ lP0  I, J ,  < 0. When ~ = ~2, a un i fo rm d i s t r i b u -  
t ion  of the space charge with dens i ty  lower  than the 
background  dens i ty  is e s t ab l i shed  in a cy l ind r i ca l  diode. 
A solu t ion  of type (1.11) can  d e s c r i b e  the p r o c e s s  of 
monotonic  dec rea se  in  dens i ty  f r o m  this  s ta te ,  too. In 
fac t ,  for  th is  the following inequal i ty  mus t  hold 

(1.13) 

F o r  s imp l i c i t y ,  le t  us a s s u m e  that  A = B. Bes ides  
(1.13),  by convent ion J5 < [P01. Hence,  we f ind that A 
n m s t  sa t i s fy  the inequa l i t i e s  

t A < 1 "  

Here ,  the solut ion has the f o r m  shown in Fig.  4. 
I t  can be shown that  so lu t ions  of the fo rm of (1.11) 
with J~(~) > tp01 do not exist .  

10 ~ Solution of s y s t e m  (S/H) leads  to the r e s u l t  

u -- a + l'z b + g'y ~ = ~ -l- g'y~ [to (1.14) ] , v =  g , ~-~-, p = - ] ~  

and for  f ( t )  and g(t) 

f ' g  + g " / =  Bo § Po/g. 

Thus ,  one of the funct ions  f ( t )  and g(t) can be a s -  
s igned a r b i t r a r i l y ;  a,  b,  R 0 a re  a r b i t r a r y  cons tan t s .  
When g - 0, we have 

u -- a +/ '~  f',:~2 no (1.15) j . ~ = ~ - / ,  p - !  

F o r  f ( t ) ,  we obta in  the equat ion 

f '  - -  P o / =  Ro. 

"1"he case  of a compensa t ing  background Po = ~w2 < 
< 0 is more  in t e r e s t i ng .  Here  

] = A sin ~ d- Ro / co ~ (~= ~)t + ~; A, 8 = const). 

By r e q u i r i n g  that the so lu t ion  be con t inuous ,  we a r -  
r ive  at the inequa l i t i e s  

A > O, j R o t >  A o  2. 

When these  condi t ions  a re  sa t i s f i ed ,  so lut ion (1.15) 
takes  the f o r m  

a ~- o)x cos T o)2x 2 sin v Bo I A u - -  ~o p =  •  ' 2(• ' •  

The t ime par t  of funct ions (1.16) is r e p r e s e n t e d  in  
Fig.  5 (I 1 = Ji/co, Ir  2, 15 = AJs/R0); these  a re  per iod ic  
funct ions  with pe r iod  T = 27r/c0, which is  d e t e r m i n e d  by 
the background densi ty.  

l i 
J 

\ 

- l y  I Z 

Fig. 5 

Every th ing  that was said in  [6] about the poss ib i l i ty  
of extending two-d imens iona l  solut ions  to the t h r e e -  
d imens iona l  case  r e m a i n s  in force .  Of the solut ions 
with undeformed equipotent ia l  su r faces  examined  in 
[6] in the p r e s e n c e  of a background,  one r e m a i n s :  the 
i nva r i a n t  solut ion for  the subgroup H (X~ -t- X~, X~, X4), 
which de sc r i be s  the e l ec t ro s t a t i c  flow between con-  
cen t r i c  sphe res  

Vr=~ rJ~ (t), ep = r2J4 (t), P -- J5 (t). (1.17) 

Sys tem (S/H) for  (1.7): 

j ,  ~_ j2  = 2Y4, J~' @ 3JJ  5 = 0 
6J~ = J~ + Po (j  = j~). (1.18) 

By e l imina t ing  J4 and J5, we obtain 

J" @ 5J J" -}- 3J  a - -  po$ = 0. (1.19) 

Solution (1.19) has the f o r m  

J~ = 2e -~r" (Ae -r" -I- B) ~- 1/3p0, (1.20) 

where  t and ~ a re  l inked by the r e l a t ion  

d; . (1.21) t 
" V 2 e ~ ( A , <  + 6) + i .  p, 

When B = 0, exp re s s ion  ( 1 . 2 1 )  is wr i t t en  as follows: 

, ~/2,", (~__~SOe,i.~) •  arch = t + , .  (,~0>0), 

Solution (1.20) when P0 < 0, jus t  as (1.11) has m e a n -  
ing over  the i n t e rva l  ~1 -< ~ -< g2, which is  defined by 
the r e q u i r e m e n t  j2 _ 0. Func t ions  J4 and Js,  as func-  
t ions  of ~, a re  specif ied by the s ame  cu rves  as in [6], 
but the curve  for  J4 is r a i s e d  by po/3. The na tu re  of 
the flows desc r ibed  by solut ion (1.20) is the same  as 
that  for  solut ion (1.11). 

It should be noted that everything said in [6] about invariant soiu- 
(i• [ = t Ro(AcoD-I 1:>t; •  Ro>0; x<0 ,  /to<0) (1.16) tions of rank 2 is valid here, too. 
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The fact that, in the presence of a background, the equations of an 
electrostatic beam permit transformation of coordinates, velocities, 
and potential with arbitrary functions of time makes it possible to 
formulate some nonstationary transform in accordance with any sta- 
tionary solution [7]; the latter solution will not be similar to any of 
the nonstationary invariant solutions examined above. Solutions that 
describe certain processes in a plane diode are the simplest to inter- 
pret. 

w Invariant solutions of the equations of a multlcomponent beam. 
When the beam is formed by particles of several kinds, the equations 
of motion arid of current conservation must be written out for each 
component. The interaction of particles with different specific charges 
is taken into account by means of the total space-charge density in 
the right side of the Poisson equation 

(s) 

0V(s) t Ov i 

- - N - - +  t~) \ o ~  + J = 

it / O~ -- ]/-~emraV(s)rnH~" ~) 
=~(s)g  ~ Oxt t 

Ot q- -~g Oz --q- 

1/~ 0~ ~ s 

Here v(s) (i), P(s) are the velocity components and the space-charge 
density of the s-component; a(s) are constants that arise in dedimen- 
sionalization and are due to the different value and sign of the specific 
charge ~ of the particles of the different components. The principal 
group of system (S) is determined by operators (2.1) in [6 ] - the  only 
difference is that now P(s)8/aP(s), V(s)Vv(s) should be understood as 
pa/ap, VVv; summation is performed with respect to s; rotation in 
plane u, v, for example, of a velocity space u, v, w ( - v a / 0 u  + U0/ 
/av) is replaced by rotation by the same angle in planes u(s), v(s ) of 
the velocity spaces U(s), V(s), W(s) of each of the components ( -V(s)a/  
/aU(s ) + U(s)a/0V(s)). The equations of an electrostatic beam lose their 
exclusivity, losing the addi t ional-as  compared with the case of H 

0 -  transformations with arbitrary functions of t ime. 
The optimal systems of subgroups (2.6) and (2.7) in [6] can be used 

without any changes to construct all the essentially different H-solutions 
of ranks 1 and 2. But now the division of the subgroups of these systems 
into three classes does not hold: the operators that form the subgroups 
of the third class do not exist, while the subgroups of the second class 
give essentially different H-solutions for any B. The type of solution is 
established by means of the table in [6]. The velocity vector and space- 
charge density of aU components have the same form (see columns of 
table for V arid p). All that was said about three-dimensional flows 
[5, 6] remains in force. 

If the velocities of all components are relativistic, then the results 
of paragraph 8 of [6] and [5] are similarly extended to the case of mul- 
ticomponent beams. But if the velocities of only a few components are 
relativistic, then the principal group of such a system is less general 
than (8.4) in [6]: only expansions, rotations of the coordinates in space, 
and translations remain. 

In [4-6] it was assumed that the velocity vector was a single-valued 
function. If V is an s-valued function (s > 1), then it can be assumed 
that we are dealing with s elementary monoenergetic beams. Here, 
all a(s ) in (S) are equal to unity. It is easy to see that the principal 
group of the obtained equations coincides with the principal group G t 
of the equations of a monoeaergetic beam [6] taking into account the 
above remark on the meaning of pO/i~p, etc. Thus, all the H-solutions 
that were examined in [4-6] are possible for a muhiveloeity beam. 

It is natural to expect that transformations with arbitrary functions 
of time that preserve the equations of a multivelocity electrostatic beam 
with an arbitrarily large s will also hold when s--*- *% i . e . ,  on moving 
to a description by means of the distribution function. It can be seen 
that Vlasov's equations actually permit these transformations. This 
makes it possible m obtain certain nonstationary solutions, if we know 
the stationary solutions of these equations [7]. 
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