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The concept of the invariant-group solution (H-solution) was introduced
and a general method for obtaining it was developed in [1-3]. The
group properties of the equations of 2 monoenergetic charged-particle
beam with the same value and sign of the specific charge 1, assuming
univalency of the velocity vector V, were studied in [4-6], where all
essentially different H-solutions were also constructed. Below, the re-
sults of [4-6] are extended to the case of a beam in the presence of a
fixed background of density p, (§1), and also to the case of multive-
locity (V is an s-valued function) and multicomponent beams (i.e.,
beams formed by particles of several kinds) (§2). A number of anal-
ytic solutions that describe some nonstationary processes in devices
with plane, cylindrical, and spherical geometry—among them a con-
tinuous periodic solution for a plane diode with a period determined
by the background density —are obtained in §1. A transformation that
contains arbitrary functions of time and preserves Vlasov's equations is
given (§2). The equations studied can be treated as the equations of a
rarefied plasma in the magnetohydrodynamic approximation, when
the pressure gradients are negligible as compared with forces of elec-
tromagnetic origin.

§1. Invariant solutions of the equations of a beam
in the presence of a background. The equations of a
beam in the presence of a background differ from the
equations derived in [6] only by additional terms in the
Poisson equation

V = (Vgg”‘aq’)—erpo

Here p, is the density of the particle background,
where p, > 0, if the background is formed by charges
of the same sign as the charge of the beam particles,
and p; < 0 in the opposite case. The principal group
of equations of the beam in the presence of a back-
ground will be less general than when p; = 0 [6]; now
Xy + X, makes sense, but not each of these operators
individually

1.1)

Xyt X2 =1V + V70 + 20 50- 1.2)

We shall retain the same notation as in [6] for the
remaining operators. As usual, in the electrostatic
case we have transformations with arbitrary functions
of time f, g, h

We will consider more particularly plane flows,

OPTIMAL SYSTEM OF SINGLE-PARAMETER SUB-
GROUPS

Ist class 2nd class
1°, Xs 4°. Xs —[— aXG 7°. X5 —}— sze
2°, X4 5° (X1 Xa) + aXs 3rd class (1. 3)
P XN+ X 6°. Xz+ a(Xy+ Xo) 8°, X;+Y,

OPTIMAL SYSTEM OF TWO-PARAMETER SUB-
GROUPS

Ist class
1% X5, X 4°, X1+ Xl Xy
26- X1+X2, Xg 5°. X3+aX5, (X1+Xz)~i— bXa (1, 4)

3. Xsta(Xi4 X), X 6% (X1 Xo) -+ aXe X5

2nd class
T XitaXe X5 8. Xa4Yq X5 aXe
9. X4 Z, (X1+ X2) +aXs
3rd class
10°.  Xg, Xo 12°,
11°0 X34 X, Y 13°.

(X1 + Xo)+ X, Zg
X + Xy, X8+ Y,

The H-solutions of rank 1 in the table correspond to
the enumerated subgroups of the optimal system (1. 4).

The H-solutions constructed in subgroups 1°-3° de-
scribe stationary flows. For all of the solutions we
have

=J; (8, H=1(@F

Let us examine some H-solutions of rank 1,
Solution 4° describes the flow between parallel
planes y = const.

Table of H-solutions of Rank 1

H-solutions of 1st class

o conditions

syl o« | I

: i° z ‘ I, J4
2° P R, |RY,
3° le=—ba/b| @ eb:qnjv eZb:ﬂs_]‘q
4° ¢ I, | y¥e

51 a=a,b=V| q—t | RI, |R¥q4
52 la=0,b50|blnR —¢ RJ, RJ,

573 l[az=0,b= t—ap R, R2J
54 |a=0,b=0 t RJv RJy
6° a=k0 % —! aJ, 2]

@’ =—by [ (b2 4 bs?), b = b1/ (022 -+ bs?)

He-solutions of 2nd class(H 540, as0)

M l E v @
7° lax—1t| I, Ja
8° ay — t Jv oz + Jd
9° |y% T yl, |aet %y,
H-solutions of 3rd class (H=1)
Ne ‘ a, B £ ” » :p
s fx gy Frat gyt
10 gy
: ! ,f + Jl g + Jg Zf 2g
o | Cax : 22
S L B AR R yla T v
i
5o | i a%x?
1271 a0 ye ax -+ yJ1 yJa NEYA
18U | =11, [+ 7y 4 Hyf "l
3 =0 =i | FE =1 T | e — YT
t3e0 | @=10 ffe 4 _ Yof"f 12 4
fa=t | P pe—mppn | ETIe L G e

T="a(x—1)
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Fig. 1
System (S/H) in the case of a uniform magnetic
field H; has the following form:
Jy I J, = HyJy J) 4 T2 =
=2, —HJ, Iy +JJg=0,
27, =J; 1+ po

(1. 5)

It can be seen that the first of these equations is
satisfied when J4 = H;. Eliminating J, and Jg, we ob-
tain

J" R8I 4 B =0  (J=J at=Hd—po) (1.6)

Three cases should be examined: (1) w?> 0, i.e.,
either py < 0 or 0 < py < H}; (2) w?< 0, i.e., py > Hf;
(3) w =0, For the first case, the solution is given by

i, cosT %nw? "
u=Hoh V= ""gnt ¥ P= 2 fsiny) ¥
n?
P=Fsme T =Ho, (1.7

(r=otte, [x=|1/a|<1, ot =11 +aY)

It is apparent that when the normal velocity compo-
nent is determined, the addition of a compensating
background is equivalent to amplification of the mag-
netic field and, conversely, the addition of a back-
ground of the same sign is equivalent to attenuation
of the magnetic field—the result is entirely natural
(attenuation or amplification of E for a fixed H). The
nature of the solution and the form of the trajectories
are the same as those of solution (3. 15) in [6] when

Py =0,

Fig. 2

In the second case, solving (1.8), we obtain
s .

1 —12ch®t 4 Qishit

o
I {(sht—x)?

Il

(k=17/ VBT, 0=iQ, 1=Qt 4%, Q1—13>0)

(Q:T)_ (1. 8)

= 1 —Qe "

The form of the function J(7) when 22 — ¥* > 0 is
shown in Fig. 1. The remaining parameters of the
flow behave in the same manner, suffering a discon-
tinuity at the point sh 7= % and monotonically decreas-
ing as |1] - =; here

Jy = H,, J, - Q, J4_,1/2(92+H02), Jy—0.

In the third case, Eq. (1.6) agrees with the equa-
tion that describes the change in velocity with respect
to time in electrostatic flow between parallel planes
and at py = 0 [6]. The solution is given by the curves
in Fig. 3 [6]—the only difference is that the curve for
J, must be raised by Hj.
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5°, 4. Let us consider an electrostatic solution of
this form. System (S/H) is then

J T = 2, Js 2JJ, =0,
* ! o s (1.9)
47, = Jy -+ py (I=h)-
Eliminating 4, and J5, we obtain
J'+4l] 420 — o =0, (1. 10)
Solution (1. 10) is given by the expression
J? =2 (A0 4 B) e 4 1,0,, (1. 11)
where t and £ are linked by the relation
dt
t= = .
i 2(AL+ B %+ apo (1.12)

It is not difficult to see that J5(¢) is specified by the
same curve as in Fig, 4 [6], and J,(%) is obtained when
the corresponding curve in Fig. 4 is raised by py/4.
Note, however, that relation (1. 12) differs from t =
= t(¢), which was derived in [6]. Solution (1.11) is not
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Fig. 4
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valid at all values of { but only at those values for
which % = 0, Figure 2 illustrates this. When p; > 0
(background of the same sign as the charge of the beam
particles), the solution makes sense over the interval
{3 = ¢ < », The nature of the flow is the same as when
oy = 0 [6]—the only difference is that J, — V ¥,p,, J, —
— Y404, J5 — 0. When p, < 0 (compensating background),
the solution is valid when &§; = ¢ = {,; the velocity van-
ishes at the ends of the interval (Fig. 3). Whend, =0,
the beam density and the background density are equal,
Later J; <|py|, /4 << 0. When ¢ = §,, a uniform distribu-
tion of the space charge with density lower than the

background density is established in a cylindrical diode.

A solution of type (1. 11) can describe the process of
monotonic decrease in density from this state, too. In
fact, for this the following inequality must hold
Vm —Aexp( )>|P° (1.13)
For simplicity, let us assume that A = B, Besides
(1.13), by convention Jj . Hence, we find that A
must satisfy the inequalities

1 A
~e-<m<1.

Here, the solution has the form shown in Fig, 4.
1t can be shown that solutions of the form of (1.11)
with J5(&,) > |p,] do not exist,

10°. Solution of system (S/H) leads to the result

a-fz b=

L A il

and for f(t) and g(t)
g + &7 = Ry + pofe.

Thus, one of the functions f(t) and g(t) can be as-
signed arbifrarily; «, b, R, are arbitrary constants.
When g = 0, we have

=z+f_f'¢, (p:%i, p:’_;z. (1.15)
For f(t), we obtain the equation
f"— pof = Ry
The case of a compensating background py = —w? <

< 0 is more interesting. Here

f=A4sint + R,/ 0 (v=0t+48§ 4,5 =const),

By requiring that the solution be continuous, we ar-
rive at the inequalities

A>0,  |Ry|> Ao

When these conditions are satisfied, solution (1.15)
takes the form

w2x?sin T o I/ A
2(x+sint) ’ p = % sint

(1. 16)

a+wreosT

U == ———mpe—— = —
#-sint ’ ¢

(in]|=1Re (A |>1; x>0, 2, >0; <0, < 0)

The time part of functions (1.16) is represented in
Fig. 5 (I3 = 3 /o, L/w?, I; = AJ;/R,); these are periodic
functions with period T = 27/w, which is determined by
the background density.
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Everything that was said in [6] about the possibility
of extending two-dimensional solutions to the three-
dimensional case remains in force, Of the solutions
with undeformed equipotential surfaces examined in
[6] in the presence of a background, one remains: the
invariant solution for the subgroup # <X; 4+ X,, X;, X,
which describes the electrostatic flow between con-
centric spheres

ve= 1S (8), @ =12, (@), p=J; (). 1.17)
System (S/H) for (1.7):
J - J =00, J 4+ 30T, =0
6/, =Js -+ 0, (I =J) (1.18)
By eliminating J, and J;, we obtain
JT 58I 433 —pJ = 0. (1.19)
Solution (1. 19) has the form
J? = 2e% (4e% + B) + Yypo, (1.20)
where t and ¢ are linked by the relation
t= = 1. 21)

V= (Ae™ + B)+Tapo

When B = 0, expression (1.21) is written as follows:
% (%)W ar sh (ﬁ el ‘) =t-+tc,

%(;})201)’5\105111(}[{90' el ‘“) =i+, (V).

(po >1),

Solution (1, 20) when p; < 0, just as (1.11) has mean-
ing over the interval £ =< ¢ ={,, which is defined by
the requirement J% = 0. Functions J, and J;, as func-
tions of ¢, are specified by the same curves as in [6],
but the curve for J, is raised by py/3. The nature of
the flows described by solution (1. 20) is the same as
that for solution (1.11).

It should be noted that everything said in [6] about invariant solu-
tions of rank 2 is valid here, too.
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The fact that, in the presence of a background, the equations of an
electrostatic beam permit transformation of coordinates, velocities,
and potential with arbitrary functions of time makes it possible to
formulate some nonstationary transform in accordance with any sta-
tionary solution {7]; the latter solution will not be similar to any of
the nonstationary invariant solutions examined above. Solutions that
describe certain processes in a plane diode are the simplest to inter-
pret.

§2. Invariant solutions of the equations of a multicomponent beam.
When the beam is formed by particles of several kinds, the equations
of motion and of current conservation must be written out for each
component. The interaction of particles with different specific charges
is taken into account by means of the total space-charge density in
the right side of the Poisson equation

i
6v<s)

ot

v, ¢
g{ 2 .2 3 -
o\ ot Tl Y )=
af o9 ~
= O‘(s)‘gv'l (_azz + Vgemnl”(s)mgn)

5) .
Py 4 8 - i =
— + Vs 5}7( Vg™ (ka)(s)) =0,

1 9 - i 0@
77 5 (Vi k)= T
s

Here V(s)(i), P(s) are the velocity components and the space-charge
density of the s-component; o(s) are constants that arise in dedimen-
sionalization and are due to the different value and sign of the specific
charge 7 of the particles of the different components. The principal
group of system (S) is determined by operators (2. 1) in [6]—the only
difference is that now pyd /8p(sy Vis)V(s) should be understood as
pd/dp, VVy; summation is performed with respect to §; rotation in
plane u, v, for example, of a velocity space u, v, W (—vd/0u + ud/
/3v) is replaced by rotation by the same angle in planes ug), v(s) of
the velocity spaces ), v(s) W(s) of each of the components (—V(s)a/
/au(s) + u(s)a/av(s)). The equations of an electrostatic beam lose their
exclusivity, losing the additional—as compared with the case of H #
= 0— transformations with arbitrary functions of time.

The optimal systems of subgroups (2. 6) and (2.7) in [6] can be used
without any changes to construct all the essentially different H-solutions
of ranks 1 and 2. But now the division of the subgroups of these systems
into three classes does not hold: the operators that form the subgroups
of the third class do not exist, while the subgroups of the second class
give essentially different H-solutions for any H. The type of solution is
established by means of the table in [6]. The velocity vector and space-
charge density of all components have the same form (see columns of
table for V and p). All that was said about three-dimensional flows
{5, 6] remains in force.

If the velocities of all compounents are relativistic, then the results
of paragraph 8 of [6] and [5] are similarly extended to the case of mul-
ticomponent beams. But if the velocities of only a few components are
relativistic, then the principal group of such a system is less general
than (8.4) in (6} only expansions, rotations of the coordinates in space,
and translations remain.

In [4-6] it was assumed that the velocity vector was a single-valued
function. If V is an s-valued function (s > 1), then it can be assumed
that we are dealing with s elementary monoenergetic beams. Here,
all ogg) in (S) are equal to unity. It is easy to see that the principal
group of the obtained equations coincides with the principal group G¢
of the equations of a monoenergetic beam [6] taking into account the
above remark on the meaning of p8/8p, etc. Thus, all the H-solutions
that were examined in [4~6] are possible for a muitiveloeity beam.

It is natural to expect that transformations with arbitrary functions
of time that preserve the equations of a multivelocity electrostatic beam
with an arbitrarily large s will also hold when s— =, i.e., on moving
to a description by means of the distribution function. It can be seen
that Vlasov's equations actually permit these transformations. This
makes it possible to obtain certain nonstationary solutions, if we know
the stationary solutions of these equations [7].
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